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Thermodynamic analysis of concentration 
fluctuations and homogeneous nucleation of 
crystal in undercooled liquid binary alloys: 
application to glass forming ability 
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Domaine Universitaire BP 75, 38402 Saint Martin d'Heres, France 

Thermodynamic analysis of the concentration fluctuations for large changes of composition, in 
undercooled liquid binary alloys is presented; a comparison between the Gibbs energy associ- 
ated with their formation and the energy barrier for homogeneous nucleation is made. An 
extension of the Massalski To concept for glass forming ability is proposed. Two systems are 
examined: Au-Si and Bi-Sn. 

1. Introduct ion 
Since the development of rapid quenching techniques 
of liquid alloys in the laboratory, many attempts have 
been made to establish criteria allowing one to foresee 
the possibilities of obtaining metastable crystalline 
phases or amorphous metals. The glass forming ability 
(GFA) has been discussed on the basis of the com- 
petition for stability between the undercooled liquid 
and the potential crystal forms that could crystallize 
from it [1]. A relatively high viscosity of the melt, 
whose composition is around the eutectic zone, with a 
predominance of heteroatomic bonding, reflected by a 
negative enthalpy [2] and volume of mixing [3, 4], are 
the main features of GFA. The crystalline phases 
which can nucleate from the liquid of a given con- 
centration constitute a guide for GFA when one looks 
at their structure and their stability concentration 
range. The phase diagram, which in a manner syn- 
thesizes the above-mentioned characteristics, can yield 
a great deal of information about GFA [5]. 

The possibility of a composition-invariant single- 
phase nucleation in the form of a metastable crystalline 
phase remains an important feature for the competition 
for GFA in the rapid quenching of liquid binary alloys 
(A, B). This idea led Massalski [6] to introduce the 
"To temperature concept" which is the temperature 
under which the crystallization from the liquid of 
composition x L (XA is the atomic fraction of A) to a 
crystal of the same composition (x s = x L) becomes 
thermodynamically possible, independent of the 
kinetics aspects, which have been discussed elsewhere 
[7]. This isoconcentration transformation is of interest 
because it can take place without prior fluctuation of 
concentration in the liquid. 

This contribution presents a thermodynamic analysis 
of the concentration fluctuations, for large changes in 
composition, in an undercooled binary liquid alloy. A 
comparison between the Gibbs energy associated with 
these fluctuations and the energy barrier corresponding 
to the formation of a critical crystalline nucleus, is 
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made. An extension of the To concept, which takes 
into account the intrinsic fluctuations of concentration 
within the undercooled liquid, is proposed. 

2. Gibbs energy associated with 
concentration fluctuations of large 
amplitude 

Following Callen [8], the probability of fluctuations in 
the extensive variables X0, X1, .Xi, X.in a small portion 
of a system (the subsystem) the volume of which 
defines the size of the fluctuation, in contact with its 
surroundings, is given by: 

l( ) 
co = C e x p ~  ~ q -  F i X i -  S[Fo , . . . ,F , ]  

0 

= C exp (a/k) (1) 

S, Xi are, respectively, the "instantaneous" entropy 
and any extensive parameter, k is the Boltzmann's 
constant. Fi are the intensive variables of the "reser- 
voir", S[F0, . . . F,] is the maximum of (~q - ZgFi~) 
and is identical to the Legendre transform of the 
equilibrium entropy. C is a constant. 

For the present case when studying concentration 
fluctuations in a liquid binary alloy (A, B) the •subsys- 
tem including n = ~^ + t~ B atoms is a small macro- 
scopic part of the liquid sample which plays the role of 
the "reservoir". When concentration fluctuations 
proceed it can be considered that temperature, pres- 
sure and chemical potentials in the reservoirs remain 
constant. Let us first define the exponential term of 
Equation 1 for a binary alloy (A, B) 
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Figure 1 Molar Gibbs energy of formation of the liquid 
(A, B) (solid line) and of the solid solution rich in A 
(AGlow) at T (referred to pure liquid elements). 

where the symbol ( ) means the ensemble average. U 
and V are, respectively, the internal energy and the 
volume of the subsystem. #A and #, are the atomic 
chemical potentials of A and B in the reservoir. As 
temperature T and pressure P can be supposed to be 
homogeneous in the whole system when concentration 
fluctuations proceed (low atomic diffusion process 
compared to thermal diffusion and kinetics of reaching 
local mechanical equilibrium) the exponential term 
becomes: 

AO # .  
a = - T  + A n A + - ~ A n s  

where AG is the variation of the Gibbs energy of the 
subsys tem corresponding to the fluctuation. A n  A = 

/~A - -  hA; Ans = ~s -- ns are the fluctuations of the 
number of atoms in the subsystem. An equivalent 
expression for o has been given by Landau [9] for 
dilute solutions. (nA)/n = x ~  is the average atomic 
fraction in the liquid and/~A/H = X A the atomic frac- 
tion within the fluctuation, including n = ~A + ~s 
atoms. Thus it follows that: 

n 
= (xA[A.A(x^  0) -- A.A(XA)] 

+ XB[A.B(XA0) - -  A .B(X^)]}  

where Na is the Avogadro number. A#A(XA) is the 
difference of the classical molar chemical potential of 
A in the fluctuation and in the pure liquid A. A/~A(XAo) 
is the difference between the molar chemical potential 
of A corresponding to the average concentration and 
its value in the pure liquid A. Thus the minimum work 
required or the Gibbs energy associated with the 
formation from the bulk of a fluctuation of n atoms 
and of concentration :CA is: 

Rmin --  Ttr 

_ n [AG(xA) - XAA#A(XAo) -- xBA#a(XAo)] 
N.  

= ~ AGr 
m (2) 

where AG(XA) is the molar Gibbs energy of formation 
of the liquid for the concentration XA and temperature 
T, and AGr represents the concentration-dependent 
term for the fluctuation. (Note that Equation 2 for the 
Gibbs energy of formation of a fluctuation is quite 
different from the classical quadratic form obtained 
for small fluctuation amplitudes [10].) A very simple 
representation of AGr can be given on an isothermal 
Gibbs energy diagram (Fig. 1) representing the molar 
Gibbs energy of formation of the liquid (A, B) from 
the pure liquid elements as a function of atomic frac- 
tion :CA. It results from trivial geometric relationships 
that the positive quantity AGf for a fluctuation of 
concentration :CA in a liquid, whose average concen- 
tration is XA0, is represented by the segment JK on 
Fig. 1 where the point J is at the intersection of the 
tangent to the Gibbs energy curve for XAo with the 
vertical line at XA- 

As we are studying fluctuations in concentration of 
great amplitude we are concerned with a non-uniform 
system and, in the frame of Cahn's formulation [11], 
we should have considered a gradient-dependent term 
in the previous Gibbs energy calculation. However, in 
the following discussion we are mostly concerned with 
melts which do not exhibit a miscibility gap, and we 
can take into account the non-uniformity by an inter- 
facial energy term corresponding to a sharp composi- 
tional transition at the interface [12]. 

Applying the zero layer model or Becker's model 
[13] to the liquid-liquid interface, the excess energy per 
unit area, e ~', corresponding to the fluctuation XA in 
the liquid of concentration xA0 is given by: 

eX , m2 - fl (XA -- XA0) 2 (3) 

where m is a structural parameter, f~ is the mean molar 
interracial area and 2 is the classical molar exchange 
energy of the liquid for a regular solution. Positive 
values of 2 lead to a miscibility gap in the liquid either 
in the stable or metastable temperature range of the 
liquid state. Far below the critical temperature [12] 
Equation 3 is a good approximation for the interfacial 
tension between the two unmixed liquids. 58 



For systems exhibiting a predominance of hetero- 
atomic bonding, 2 and, consequently, e ~ are negative. 
The negative value for d '~ can be easily understood by 
the excess number of heteroatomic pairs appearing at 
the edge of the fluctuation when referring to the average 
number of heteroatomic pairs formed between two 
atomic layers within the bulk. 

Considering that fluctuation is of spherical sym- 
metry, the total work required for its formation is 

4r~m 
Wr = ~QAGfr 3 +- - -~- (x  A - -  XAo)2r 2 (4) 

where r is the radius of the fluctuation and 0 is the 
number of moles per unit volume in the fluctuation. 
(Formally, the negative value of the r 2 term of W r 
could give a negative minimum in Wr for smaller r, 
which could mean a stabilization of the fluctuation. 
For a high negative value of 2 the value of r which 
gives a negative minimum for Wr is of the order of 
0.1 nm. This makes no sense, as Equation 4 is only 
valid for a macroscopic fluctuation.) 

For typical values of critical radius for crystalline 
nucleation r >t 1 nm, which we will consider in the 
following; the second term of Equation 4 is only a few 
per cent of the first one. Thus an overestimated value 
for the minimum work required to form a spherical 
fluctuation in a binary liquid alloy with 2 < 0 is 
given by: 

n AGr (5) W r = {n0AGrr 3 = 

This approximated expression for Wr will be used in 
the following treatment. 

3. Relation between the min imum work  
required for the format ion of a 
f luctuat ion of concentrat ion and 
min imum work  required to form a 
critical crystall ine nucleus in an 
undercooled binary liquid 

The clas,~ical theory of homogeneous nucleation [14] 
in undercooled binary metallic melts (A, B) leads to 
the following expression for the Gibbs energy barrier, 
AG,*, for the formation of a spherical critical nucleus 
whose concentration is XA and containing n* atoms: 

16 02 
A G *  = 3 ~ 2 2 Os AGv 

where 0~ is the number of moles per unit volume of the 
solid, . is the crystal-melt interfacial energy. AG~, 
which is the molar Gibbs energy change when forming 
a small amount of solid of composition XA from the 
liquid, is given by: 

= a Q o ~ -  XAA/~A(XA0) -- xnA/~B(XA0) (7) 

with 

AG, o~ = XALUA,(X^) - -  t~oL] + XB[VB~(XA) --  VO] 

(8) 

where/z~ and/zB~ are the chemical potentials of A and 
B in the solid solution,/z° and #° L are the correspond- 
ing chemical potentials of the pure liquid elements. 

( A G s o  1 is represented in Fig. 1.) It is well known from 
the classical tangent rule that AG~, which is necessarily 
negative, can be represented by the segment JN on the 
Gibbs energy-composition diagram of Fig. 1. AG* 
is related to AG~ by using the following classical 
relations. 

The number of atoms in the critical nucleus of 
radius 

20- 
(9) 

ro = esAGv 

is 

n* 4 3 - ~ r c  N~tr3 2N~AG* 
= ~rcr=QsN ~ = ~ = ~,AG~ AtL 

Thus 

1 rt* 
AG* = - - -  ( -  AGO (10) 

2 N .  

Combining Equations 5 and 10 yields 

Wr/AG* = 2 n A G r / n * ( -  AG,,) 

Let us consider a fluctuation of concentration with 
the same composition and the same size as the critical 
nucleus n = n*; it follows that: 

WrlAG* = - 2AGr/AGv 

a relation giving the relative value of the energy barrier 
for the fluctuation to the critical nucleus one, without 
any information on the interfacial energy ~r. 

Going back to the graphical representation of Fig. 1, 
to compare Wr with AG* is equivalent to comparing 
the segments 2 JK with NJ. 

An interesting case which will be discussed later in 
more detail is obtained Wr = AG*, which is equivalent 
to the condition: 

2AGr = - A G v ; ( 2 J K  = N J o r J K  = ~NK) (11) 

The corresponding point Jr is one-third of the way 
along KN starting from K. Drawing the tangent from 
Jr to the Gibbs energy curve of the liquid we get the 
composition XrA0 of the oversaturated liquid, for this 
temperature, which can give a critical nucleus of com- 
position xA for the same amount of energy as that for 
the corresponding fluctuation. In other words, as Wr 
and AG* both appear in exponentials in the expressions 
of the probability of a fluctuation and the frequency of 
nucleation [14], it follows that Equation 11 corresponds 
to a rapid change in the frequency of appearance 
within the liquid of critical nuclei and fluctuations for 
the same size and composition. Typically a difference 
of 1% in the energy barrier for nucleation to the 
condition AG* = Wr gives a ratio: 

N* Wr/ n* AG* 
exp Na ~-~/ exp Na k T  

of the order of 106, for a nucleus of 2nm radius. 
Thus, whatever the preexponential factors are, there is 
a drastic variation in the relative frequency of appear- 
ance of critical nucleus and fluctuation around the 
condition AG* = Wr. Considering now the whole 
range of possible composition for a critical nucleus 
x~A < XA ~< 1 (X~A is the composition at the intersection 
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Figure 2 Relative positions of ( - - - )  T F and ( - - - - - )  To curves 
between the liquidus and the solidus of the phase diagram. 

of the Gibbs energy of formation curves for the 
liquid and solid alloys; this concentration is at the 
basis of the Massalski To curves defining the limit of 
the possible partitionless crystallization from the 
liquid). The locus of the points Jr, for which Wr(XA) = 
AG* (xA), is represented by the dashed curve in Fig. 1. 

Within the oversaturated range of composition for 
the liquid at T, what is the maximum value of the 
oversaturation : ~  under which the Gibbs energy of 
formation of the concentration fluctuation in the 
range x~ < xA ~< 1 is larger than the energy of 
formation for the critical nucleus? This ~ value is 
thus given in Fig. 1 by drawing the common tangent 
to the locus curve of Jr and to the Gibbs energy curve 
for the liquid. The contact point with the liquid curve 
gives ~ .  It must be noticed that the other contact 
point defines a concentration which does not corre- 
spond exactly to the solid composition which is more 
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likely to nucleate in the liquid of concentration ~ .  
This concentration is given by the maximum value of 
IAGv I- A simple graphical method to evaluate this last 
composition has been given by Thompson and 
Spaepen [15]. 

By varying the temperature, the locus of the x~0 (T) 
can be represented on the phase diagram. Under this 
TF curve, fluctuations of concentrations are com- 

paratively energetically favorable. The general aspect 
of a TF curve is given in Fig. 2 which also shows a To 
curve. Of course the undercooling allowed to avoid 
fluctuations of critical size is much less than that to 
prevent partitionless transformation. 

Massalski's approach represents a preliminary 
attempt to extrapolate arguments used to interpret 
massive phase transformations to the problem of 
GFA. If one considers that the fluctuations of con- 
centrations which appear with a higher frequency than 
the critical nucleii below the TF curves could play the 
role of privileged sites for crystalline nucleation, the 
TF curves will reduce considerably the total range of 
composition for GFA allowed from the To curves and 
will make this range closer to the eutectic region. The 
TF curves have been calculated for the two systems 
Au-Si and Bi-Sn. The two following circumstances 
have been chosen for the Au-Si system. 

First, solid solubilities are neglected (Fig. 3). The 
two TF curves intercept in the negative temperature 
range. The highest undercooling to reach the Tp curves 
is around the eutectic composition which corresponds 
to the classical region for GFA by rapid quenching 
from the liquid. Note that in this case the To curves 
coincide with the vertical axes on both composition 
limits of the phase diagram which would yield, accord- 
ing to Massakski's criteria, the whole range of compo- 
sition as apt for GFA. 

Second, the Au-Si TF curves were evaluated con- 
sidering very small reciprocal solubilities in the solid 
state (these solubilities cannot be shown on the scale 
chosen to represent the phase diagram in Fig. 4). 

Figure 3 Calculated T F curves for the system 
Au-Si, assuming no solid solutions. 
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Figure 4 Calculated T r curves for the system Au-Si, assuming small 
solid solubilities. 

intercept for a positive temperature (T~ = 350 K) and 
delineate a domain for privileged fluctuations in the 
whole range of composition. The maximum under- 
cooling temperatures lie entirely in this domain, which 
means that when homogeneous nucleation proceeds 
with the highest frequency in the melt the fluctuations 
of concentration might play the role of privileged sites 
for nucleation. Moreover, it can be emphasized that 
amorphous alloys Bi-Sn have not been obtained so 
far, from rapid quenching of the liquid. 

The present criterion is coherent with Sommer's [17] 
and Giessen's [18] approach to GFA based on a small 
Gibbs energy change on crystallization as a conse- 
quence of the relatively high stability of the liquid. In 
fact, a smaller Gibbs energy change on crystallization 
gives a common tangent to the JF lOCUS curve and the 
AG,q=d with a lower slope, in absolute value, and leads 
to higher values for ~ which lowers the TF curves 
and, consequently, increases the composition range 
for GFA. 

There is a sensitivity in the TF curves to the extent of 
solid solutions which brings the TF curves closer to the 
liquidus and, consequently, narrows the GFA com- 
position range. 

Obviously, for the small concentration range in the 
liquid (gold, silicon) phase the difference T L --  TF 
between the liquidus temperature and the TF curve is 
surely smaller than the maximum undercooling which 
is, to our knowledge, unknown experimentally for this 
system. In fact, one has to keep in mind that even 
though the condition Wf = AG* is fulfilled in this 
region, the great number of atoms in the critical nucleus 
n* makes the probability infinitely small for the 
formation of either the fluctuations or the critical 
nucleus. 

Tv curves for the system Bi-Sn are presented in 
Fig. 5 with the maximum undercooling temperatures 
determined experimentally by Perepezko e t  al. [16] for 
the whole range of composition. First, the TF curves 
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~'gure 5 Calculated TF curves for the system Bi-Sn. The black 
triangles represent the maximum undercooling temperatures 
measured by Perepezko et al. [16]. 

4.  D i s c u s s i o n  a n d  c o n c l u s i o n s  
Let us discuss more deeply the condit ion Wr = AG*. 
First, let us draw the whole Gibbs energy balance for 
the formation of a classical nucleus of radius rc and 
composition :CA via fluctuations of concentration to be 
compared with the classical barrier AG*. 

As we have considered the case for which the 
minimum work required to create the fluctuation is 
equal to the energy barrier for the classical critical 
nucleus of the same concentration and size (I'Vr = 
AG*), the path via fluctuations will be energetically 
equivalent as a whole to the classical one only if the 
total Gibbs energy variation AgLs when forming the 
critical nucleus of radius rc inside the prior fluctuation 
is found to be equal to zero. Of course, this condition 
has to be verified by virtue of the first principle. 

We start with the infinitesimal expression for the 
Gibbs energy variation inside the fluctuation where 
the solid-liquid interface has to be built: 

dgLs = 8ruri~or d r  - 4r~s[AG r - AGv]r 2 dr (12) 

where (AGr - AG,) represents the new driving force 
for nucleation inside the fluctuation (segment NK in 
Fig. 1). tr~.o is the solid-liquid interfacial energy for 
isoconcentration of the solid and liquid. The inte- 
gration of Equation 12 between r = 0 and r = r° and 
the use of Equation 9 leads to: 

AgLS = AGn* 3 tri~° + 2 (13) 
a j 

Applying the zero layer model, already used before, 
one can find 

m2 (Ax) 2 (14) O'is o - -  O" = 

which we can notice is equal to the excess interfacial 
energy associated with the formation of the fluctuation 
given by Equation 3. ((Ax) 2 is substituted for (x A - 
XA0) 2 which appears in Equation 3). Thus Equation 13 
becomes: 

AgLS = AGf 3m2 (Ax) 2 (15) 
AG* I + 2 AG, f~tr 
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Let us now again write the condition W r = AG* 
without neglecting the e ~ term in Equation 4 as we are 
doing an energy balance: 

n* 4nm 1 n* 
+ = - a G v  

as n*/N. ~ = 3 nrc 0., the condition Wr = AG* is equi- 
valent to: 

AGr 3m2 
1 + 2 AGv t)tr (Ax)2 = 0 (16) 

Consequently, if Equation 11 is satisfied, the right- 
hand term of Equation 15 is equal to zero and we find 
AgEs = 0. Thus we have checked that in the frame- 
work of the model used for calculation of interfacial 
energies, the path via fluctuations is energetically 
equivalent to the classical one. As a matter of fact, the 
condition Wr = AG* appears to be a particular case of 
the more general relation expressing the first principle 
through the two thermodynamic paths: 

(w0,=,o + = (ao*),=,o 

an equation which can also be easily checked from the 
previous relations. 

let us now pay attention to the values of AgLs inside 
the fluctuation for r < r,. Integration of Equation 12 
between 0 and r for 0 < r < rc leads to: 

/~kgLS = 4~r2triso --  ~ g Q s [ A G f -  AGv]r  3 

AgEs presents a maximum value between 0 and r = rc 
for :  

2triso 

q . ( a a f -  AGO 

The corresponding value for the maximum of AgEs 
inside the fluctuation is: 

Ages = d[AG ' _ AGv]  

Dividing by the classical energy barrier for r = r~ we 
get: 

~Vhich gives , wh_en_E_q_uation 11 i s satisfied and using 
Equations 14 and 16: 

Ag*s 4-[1 m2 ] 
A G *  = - ( A x ) 2  

For typical values of 2, f~, tr the term in (Ax) 2 stays 
lower than unity, and consequently the energy barrier 
inside the fluctuation is smaller than that necessary to 
form the critical nucleus of radius r~. 

In this paper we have defined a significant particular 
thermodynamic state in the undercooled binary liquid 
for which the Gibbs energy variation leading to the 
classical critical nucleus is equivalent to the Gibbs 
energy of formation of the fluctuation of concentration 
of same size and concentration. For higher undercool- 
ing, the number of fluctuations per unit time is expected 
to become much greater than that of classical nucleus 
and the fluctuations might play the role of privileged 
sites for nucleation. The nucleation inside these flue- 

tuations involves a Gibbs energy barrier lower than 
the classical one and inside the fluctuation critical 
nuclei could be formed; they are, of course, of smaller 
size when compared to the classical critical one. How- 
ever, when the total energy balance is drawn for a 
given temperature we have to include the minimum 
work required to form the preexisting fluctuation (of 
n* size) and the total energy found is higher than the 
classical energy barrier. The case of pre-existing fluctu- 
ations at higher temperature and as-quenched in the 
undercooled liquid would be interesting to study from 
both the energetic and kinetic points of view. 

We have proposed an extension of Massalski's To 
concept which is consistent with the general criterion 
due to Sommer and Giessen and gives a significant 
concentration region for GFA even though the extent 
in concentration of the solid phases which are supposed 
to crystallize is very small; this is specifically the case 
for systems exhibiting an easy GFA. This criterion 
can be extended to systems including more than two 
elements. 
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